Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yiqun Zhang, ${ }^{\text {a }}$ Lian Ee Khoo, ${ }^{\text {a }}$
Teck Yong Tou ${ }^{\text {b }}$ and
Seik Weng $\mathbf{N g}^{\text {c }}$ *
${ }^{\text {a }}$ National Institute of Education, Nanyang Technological Univerity, Singapore, ${ }^{\mathbf{b}}$ Faculty of Engineering, MultiMedia University, 63100
Cyberjaya, Malaysia, and ${ }^{\mathrm{c}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.037$
$w R$ factor $=0.078$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[3-(4-methylcoumarinyl-7-oxy)-μ-methoxy-1,1,3,3-tetramethyldistannoxane]

Centrosymmeric bis[3-(4-methylcoumarinyl-7-oxy)- μ-meth-oxy-1,1,3,3-tetramethyldistannoxane], $\left[\mu-\mathrm{OCH}_{3}-\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{10^{-}}\right.\right.$ $\left.\left.\mathrm{H}_{7} \mathrm{O}_{3}\right) \mathrm{Sn}-\mathrm{O}-\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, possesses a central rhombic $\mathrm{Sn}^{\prime}{ }_{2} \mathrm{O}_{2}^{\prime}$ core, which is flanked on opposite sides by the $\mathrm{Sn}^{\prime} \mathrm{O}^{\prime} \mathrm{Sn}^{\prime \prime} \mathrm{O}^{\prime \prime}$ unit (where O^{\prime} is the distannoxanyl O atom and $\mathrm{O}^{\prime \prime}$ is the methoxyl O atom). The two Sn atoms are both five-coordinate, in a cis- $\mathrm{C}_{2} \mathrm{SnO}_{3}$ trigonal bipyramidal geometry $[\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ 130.6 (4) and $133.3(4)^{\circ}$].

Comment

Since the photophysical properties of fluorophores that are complexed with metals are distinctly different from those of the fluorophores themselves (Löhr \& Vögtle, 1985; Thanabal \& Krishnan, 1982; Tundo \& Fendler, 1980; Ghosh et al., 1988), such complexes are of potential application as laser dyes, frequency converters and ion-recognition agents (Bourson \& Valeur, 1989; Bourson et al., 1982, 1983; Ernsting et al., 1988). Among the fluoroionophores, the most studied are courmarin derivatives (Bourson \& Valeur, 1989); in their complexes, the light-emitting ability is expected to depend on the metal atom itself. Among organotin compounds, derivatives in which the Sn atom is linked, albeit indirectly, to a coumarin entity (Ng , 1999; Ng \& Kumar Das, 1997) have also been reported. The present centrosymmetric bis[3-(4-methylcoumarinyl-7-oxy)-μ-methoxy-1,1,3,3-tetramethyldistannoxane], $\quad\left[\mu-\mathrm{OCH}_{3}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{3}\right) \mathrm{Sn}-\mathrm{O}-\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$, (I) (Fig. 1), is formally a distannoxane; distannoxanes are the hydrolysis products of diorganotin derivatives such as chlorides and carboxylates $(\mathrm{Ng}$ et al., 1991).

Unlike the dimeric, tetranuclear distannoxanes that are formulated as $\left[\left(R_{2} \operatorname{Sn} X\right)_{2} \mathrm{O}\right]_{2}$, the four X entities in the present compound are not identical; two are aroyloxy and two are methoxy units. Such a 'mixed' distannoxane is unprecedented in organotin chemistry (Haiduc \& Edelmann, 1999). The compound features a central rhombic $\mathrm{Sn}_{2} \mathrm{O}_{2}$ core, flanked on opposite sides by the $\mathrm{Sn} 1-\mathrm{O} 4-\mathrm{Sn} 2-\mathrm{O} 5$ unit (where O5 is the distannoxanyl O atom and O 5 is the methoxyl O atom). The aryloxide group is covalently linked to atom Sn 1 , which is five-coordinate in a cis- $\mathrm{C}_{2} \mathrm{SnO}_{3}$ trigonal bipyramidal geometry

Received 5 September 2003 Accepted 8 September 2003 Online 18 September 2003

Figure 1
ORTEP plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code (i) $1-x, 1-y, 1-z$.]

Figure 2
ORTEP plot of the layer structure. Weak $\mathrm{Sn} \cdots \mathrm{O}$ interactions are shown as dashed lines.
[C1-Sn1-C2 $133.3(4)^{\circ}$]. Its O atom interacts weakly with atom Sn 2 , at a distance of approximately $3.3 \AA$, but the interaction does not widen the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle $[\mathrm{C} 3-\mathrm{Sn} 2-$ C4 $130.6(4)^{\circ}$], so that the geometry of this atom is also a a cis$\mathrm{C}_{2} \mathrm{SnO}_{3}$ trigonal bipyramid. The entire molecule is nearly flat; adjacent molecules are linked by much weaker $\mathrm{Sn} \cdots \mathrm{O}$ (> $3.5 \AA$) interactions, giving rise to a layer structure (Fig. 2).

In methanol solution, the compound shows a UV absorption maximum at 324 nm (molar extinction coefficient $29,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$); the free organic reagent also absorbs at this wavelength (Abdel-Mottaleb et al., 1989). The fluorescence quantum yield is significantly higher (0.83 compared with 0.42 for the coumarin). Although the maximum absorption band is sufficiently near the peak lasing wavelength of a nitrogen laser that can be used as the pump source, the compound is not sufficiently soluble for its lasing action to be ascertained. For commercially available laser dyes, this concentration is typically 10^{-4} to $10^{-3} \mathrm{M}$.

Experimental

Dimethyltin oxide ($0.83 \mathrm{~g}, 5 \mathrm{mmol}$) and 7-hydroxy-4-methylcoumarin $(1.74 \mathrm{~g}, 10 \mathrm{mmol})$ were heated in methanol $(10 \mathrm{ml})$ for several hours until most of the oxide had dissolved. The solvent was removed and
the compound recrystallized from a $1 / 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ mixture to furnish crystals that melt at temperatures higher than 573 K .

Crystal data

$\left[\mathrm{Sn}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}\left(\mathrm{CH}_{3}\right)_{8} \mathrm{O}_{2}\right] \quad \mathrm{Z}=1$
$M_{r}=1039.41$
Triclinic, $P \overline{1}$
$a=8.811$ (3) £
$b=9.717$ (3) \AA
$c=12.724$ (4) \AA
$\alpha=104.87$ (4) ${ }^{\circ}$
$\beta=93.42$ (4) ${ }^{\circ}$
$\gamma=115.266(7)^{\circ}$
$V=934.2(5) \AA^{3}$
$D_{x}=1.848 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 22 reflections
$\theta=3.0-9.9^{\circ}$
$\mu=2.69 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colorless
$0.20 \times 0.20 \times 0.04 \mathrm{~mm}$
Data collection
Siemens $P 4$ four-circle
$R_{\text {int }}=0.032$
diffractometer
$\theta_{\text {max }}=25.0^{\circ}$
$\omega-2 \theta$ scans
Absorption correction: ψ scan
$h=-1 \rightarrow 10$
$k=-11 \rightarrow 10$
(North et al., 1968)
$T_{\text {min }}=0.642, T_{\text {max }}=0.898$
3983 measured reflections
3287 independent reflections
2285 reflections with $I>2 \sigma(I)$
Refinement
Refinement on F^{2}
$l=-15 \rightarrow 15$
3 standard reflections every 97 reflections intensity decay: 8.7%
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.078$
$S=0.99$
3287 reflections
205 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0271 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.54 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected geometric parameters $\left({ }^{\AA},{ }^{\circ}\right)$.

Sn1-C1	$2.087(8)$	$\mathrm{Sn} 2-\mathrm{C} 3$	$2.108(8)$
$\mathrm{Sn} 1-\mathrm{C} 2$	$2.11(1)$	$\mathrm{Sn} 2-\mathrm{C} 4$	$2.077(9)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.101(5)$	$\mathrm{Sn} 2-\mathrm{O} 4$	$2.024(5)$
$\mathrm{Sn} 1-\mathrm{O} 4$	$1.998(5)$	$\mathrm{Sn} 2-\mathrm{O} 4^{\mathrm{i}}$	$2.088(4)$
$\mathrm{Sn} 1-\mathrm{O} 5$	$2.223(5)$	$\mathrm{Sn} 2-\mathrm{O} 5$	$2.157(5)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 2$	$133.3(4)$	$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{O} 4^{\mathrm{i}}$	$97.4(3)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{O} 1$	$97.5(3)$	$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{O} 5$	$97.1(3)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{O} 4$	$113.1(3)$	$\mathrm{C} 4-\mathrm{Sn} 2-\mathrm{O} 4$	$116.1(4)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{O} 5$	$92.8(3)$	$\mathrm{C} 4-\mathrm{Sn} 2-\mathrm{O} 4^{\mathrm{i}}$	$98.4(3)$
$\mathrm{C} 2-\mathrm{Sn} 1-\mathrm{O} 1$	$98.8(4)$	$\mathrm{C} 4-\mathrm{Sn} 2-\mathrm{O} 5$	$95.7(3)$
$\mathrm{C} 2-\mathrm{Sn} 1-\mathrm{O} 4$	$112.7(4)$	$\mathrm{O} 4-\mathrm{Sn} 2-\mathrm{O} 4^{\mathrm{i}}$	$73.0(2)$
$\mathrm{C} 2-\mathrm{Sn} 1-\mathrm{O} 5$	$93.4(4)$	$\mathrm{O} 4-\mathrm{Sn} 2-\mathrm{O} 5$	$72.3(2)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 4$	$79.9(2)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Sn} 2-\mathrm{O} 5$	$145.3(2)$
$\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{O} 5$	$71.4(2)$	$\mathrm{Sn} 1-\mathrm{O} 4-\mathrm{Sn} 2$	$114.9(2)$
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 5$	$151.3(2)$	$\mathrm{Sn} 1-\mathrm{O} 4-\mathrm{Sn}{ }^{\mathrm{i}}$	$138.0(2)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{C} 4$	$130.6(4)$	$\mathrm{Sn} 2-\mathrm{O} 4-\mathrm{Sn} 2^{\mathrm{i}}$	$107.0(2)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{O} 4$	$113.3(4)$		

Symmetry codes: (i) $1-x, 1-y, 1-z$.

The carbon-bound H atoms were positioned geometrically and treated as riding on the parent C atoms $\left(\mathrm{C}-\mathrm{H} 0.93 \AA\right.$ and $U_{\text {iso }}=$ $1.2 U_{\text {eq }} \mathrm{C}$ for the aromatic H atoms; $\mathrm{C}-\mathrm{H} 0.96 \AA$ and $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms). The torsion angles of the methyl groups were refined.

Data collection: XSCANS (Bruker, 1997); cell refinement: LEAST SQUARES in XSCANS; data reduction: REDUCE in XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science, Technology and the Environment, Malaysia (IRPA 09-02-03-0662), Nanyang Technological University and the University of Malaya for supporting this work.

References

Abdel-Mottaleb, M. S. A., El-Sayed, B. A., Abo-Aly, M. M. \& El-Kay, M. Y. (1989). J. Photochem. Photobiol. A, 46, 379-390.

Bourson, J., Mugnier, J. \& Valeur, B. (1982). Chem. Phys. Lett. 92, 430-432.
Bourson, J., Pouget, J. \& Valeur, B. (1983). J. Phys. Chem. 97, 4552-4557.
Bourson, J. \& Valeur, B. (1989). J. Phys. Chem. 93, 3871-3876.
Bruker (1997). XSCANS. Version 2.21. Bruker AXS Inc., Madison, Wisconsin 53719-1173, USA.

Ernsting, N. P., Kaschke, M., Kleinschmidt, J., Drexhage, K. H. \& Huth, V. (1988). Chem. Phys. 122, 431-432.

Ghosh, S., Petrin, M., Maki, A. H. \& Sousa, L. R. (1988). J. Chem. Phys. 88, 2913-2918.
Haiduc, I. \& Edelmann, F. (1999). Supramolecular Organometallic Chemistry. Germany: Wiley-VCH.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Löhr, H. G. \& Vögtle, F. (1985). Acc. Chem. Res. 18, 65-72.
Ng, S. W. (1999). Acta Cryst. C55, 523-531.
Ng, S. W., Chen, W. \& Kumar Das, V. G. (1991). J. Organomet. Chem. 412, 3945.

Ng, S. W. \& Kumar Das, V. G. (1997). Acta Cryst. C53, 1034-1036.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Thanabal, V. \& Krishnan, V. (1982). J. Am. Chem. Soc. 104, 3643-3650.
Tundo, P. \& Fendler, J. H. (1980). J. Am. Chem. Soc. 102, 1760-1762.

